Abstract
We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3–5 years’ duration while working on or near the flight line.
Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n-hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed.
Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity.
Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel.
CASE REPORTS
Case 1: Military Flight Refueler
A37-year-old woman presented with several years of progressively worsening continuous dizziness, headache, and fatigue. The dizziness consisted of sensations of spinning, tilting, disequilibrium, and head fullness. She did not report tinnitus or hearing loss. She was employed as a military flight refueler and exposed to JP-8 vapors and exhaust while working full-time on and around a KC-135E tanker aircraft, a plane used for performing in-flight refueling missions. She worked in a large enclosed hangar that housed all but the tail section of the tanker aircraft. During inspection and maintenance of the aircraft, up to 9,750 gallons of fuel would be loaded. Jet fuel vapors were always present in the hangar due to venting, small leaks, and fuel residue. Fuel vapor concentrations were even greater when engine maintenance necessitated removal of fuel filters and fuel components, draining of fuel into buckets, and opening of fuel lines. She worked in engine maintenance with over 4 years of inhalational and dermal exposure to JP-4 and JP-8.
Cases 2 and 3
The following two patients were employees in a small purchasing warehouse, located 75 feet south of the fight path, which was separated from the blast and heat emissions from jet aircraft engines by a metal-coated and chain-link fence. Neither air conditioning vents nor carpet had not been cleaned or replaced for over a decade. On inspection, the vents were found to be mal-functioning such that air was able to enter the building but unable to escape. Subsequent inspection by the U. S. Occupational Safety and Health Administration (OSHA) confirmed poor ventilation evidenced by carbon dioxide concentrations >1,500ppm (nor-mal <1,000 ppm according to the U.S. Department of Labor). Hydrocarbons discovered in the carpet via an independent analysis using gas chromatography/mass spectrometry included undecane (C11), dodecane (C12), tridecane (C13), tetradecane (C14), and toluene (C8)—all known JP-8 constituents (2). The chemicals present in the office carpet likely reflected poor indoor air quality. Vapor, aerosol, dermal, and eye absorption of JP-8 are presumed.
Case 2: Warehouse Employe 1
A 45-year-old female contracting officer for the National Guard reported several years of imbalance, headache, fatigue, eye and skin irritation, coughing, sinus congestion, recurrent urinary tract infections, chest tightness, irritability, depression, shortness of breath, palpitations, and numbness. She described her dizziness as an intermittent floating and a rightward tilting sensation with imbalance lasting minutes to hours without any particular pattern. She had a history of asthma and allergies including reaction to aspirin causing urticaria and airway obstruction. In 1998, she developed syncope and dizziness though no specific cause was found. She started working in the building in 1994 and worked there full-time for 5 years.
Case 3: Warehouse Employe 2
A 54-year-old female National Guard contract specialist presented with 2 years of intermittent dizziness, blurred vision, and occasional palpitations. Dizziness was experienced at least 3 days a week. She reported intermittent problems with erratic heart beats, cough, sneezing, headaches, fatigue, recurrent sinus infections, upper respiratory tract, and bladder infections. She worked in the purchasing warehouse full-time for 3 years. When away from the workplace her symptoms were improved. After moving with her colleagues into a new building, the frequency of dizziness was lessened.
Human Exposure and Absorption of Jet Fuel
Military duties such as fuel transportation, aircraft fueling and defueling, aircraft maintenance, cold aircraft engine starts, maintenance of equipment and machinery, use of tent heaters, and cleaning or degreasing with fuel may result in jet fuel exposure. Fuel handlers, mechanics, flight line personnel, especially crew chiefs, and even incidental workers remain at risk for developing illness secondary to chronic JP-8 fuel exposure in aerosol, vapor or liquid form. JP-8 is one of the most common occupational chemical exposures in the US military (1).
The Air Force has set recommended exposure limits for JP-8 at 63ppm (447mg/m3 as an 8-h time-weighted average) (22).In addition to exposure by JP-8 vapor inhalation, toxicity may also occur by absorption through the skin, which is proportional to the amount of skin exposed and the duration of exposure (23, 24). In addition to the standard operating procedure and safety guidelines, double gloving, immediate onsite laundering of contaminated/soiled jumpsuits, regular washing of safety goggles and masks, reduced foam handling time, smoking cessation, adequate cross ventilation, and frequent shift breaks may reduce the overall risk of JP-8 induced illness
At this time, OSHA has not determined a legal limit for jet fuels in workroom air. The U.S. National Institute of Occupational Safety and Health set a recommended limit of 100mg/m3 for kerosene in air averaged over a 10-h work day. Multi-organ toxicity has been documented from JP-8 exposure in animal experiments over the past 15 years. More recently, toxicology researchers are investigating the adverse tissue effects of JP-8 jet fuel in concentrations well below permissible exposure limits.
Ultimately, the new data may help us to better understand the emerging genetic, metabolic and inflammatory mechanisms underpinning JP-8 cellular toxicity—including auditory and vestibular toxicity—and lead to a reassessment of the safe JP-8 exposure limits (25, 26).
CONCLUSION
Bilateral Vestibular Dysfunction… (PDF Download Available). Available from: https://www.researchgate.net/publication/325175906_Bilateral_Vestibular_Dysfunction_Associated_With_Chronic_Exposure_to_Military_Jet_Propellant_Type-Eight_Jet_Fuel
*****
Difference between Jet A1 & JP-8
Jet fuel, aviation turbine fuel (ATF), or avtur, is a type of aviation fuel designed for use in aircraft powered by gas-turbine engines. It is colorless to straw-colored in appearance. The most commonly used fuels for commercial aviation are Jet A and Jet A-1, which are produced to a standardized international specification. The only other jet fuel commonly used in civilian turbine-engine powered aviation is Jet B, which is used for its enhanced cold-weather performance.
Jet fuel is a mixture of a large number of different hydrocarbons. The range of their sizes (molecular weights or carbon numbers) is defined by the requirements for the product, such as the freezing or smoke point. Kerosene-type jet fuel (including Jet A and Jet A-1) has a carbon number distribution between about 8 and 16 (carbon atoms per molecule); wide-cut or naphtha-type jet fuel (including Jet B), between about 5 and 15.[1]
Additives
The DEF STAN 91-91 (UK) and ASTM D1655 (international) specifications allow for certain additives to be added to jet fuel, including:[13][14]
- Antioxidants to prevent gumming, usually based on alkylated phenols, e.g., AO-30, AO-31, or AO-37;
- Antistatic agents, to dissipate static electricity and prevent sparking; Stadis 450, with dinonylnaphthylsulfonic acid (DINNSA) as a component, is an example
- Corrosion inhibitors, e.g., DCI-4A used for civilian and military fuels, and DCI-6A used for military fuels;
- Fuel system icing inhibitor (FSII) agents, e.g., Di-EGME; FSII is often mixed at the point-of-sale so that users with heated fuel lines do not have to pay the extra expense.
- Biocides are to remediate microbial (i.e., bacterial and fungal) growth present in aircraft fuel systems. Currently, two biocides are approved for use by most aircraft and turbine engine original equipment manufacturers (OEMs); Kathon FP1.5 Microbiocide and Biobor JF.[15]
- Metal deactivator can be added to remediate the deleterious effects of trace metals on the thermal stability of the fuel. The one allowable additive is N,N’-disalicylidene 1,2-propanediamine.
As the aviation industry’s jet kerosene demands have increased to more than 5% of all refined products derived from crude, it has been necessary for the refiner to optimize the yield of jet kerosene, a high value product, by varying process techniques. New processes have allowed flexibility in the choice of crudes, the use of coal tar sands as a source of molecules and the manufacture of synthetic blend stocks. Due to the number and severity of the processes used, it is often necessary and sometimes mandatory to use additives. These additives may, for example, prevent the formation of harmful chemical species or improve a property of a fuel to prevent further engine wear.
https://en.wikipedia.org/wiki/Jet_fuel
JP-8, or JP8 (for “Jet Propellant 8”) is a jet fuel, specified and used widely by the US military. It is specified by MIL-DTL-83133 and British Defence Standard 91-87, and similar to commercial aviation’s Jet A-1, but with the addition of corrosion inhibitor and anti-icing additives.
A kerosene-based fuel, JP-8 is projected to remain in use at least until 2025. It was first introduced at NATO bases in 1978. Its NATO code is F-34.