Illnesses linked to dichloromethane aka DCM aka methylene chloride

CAS number: 75-09-2

Diseases linked to this toxicant grouped by strength of evidence.

Photo of DCM-based paint stripper as used by the Irish Air Corps in 2015. An EU ban on the use of DCM-based paint strippers came into force three years earlier on the 6th of June 2012.

Strong Evidence

  • Arrhythmias*
  • Myocardial infarction (heart attack)*

Good Evidence

  • Brain cancer – adult*
  • Fetotoxicity (miscarriage / spontaneous abortion, stillbirth)*
  • Reduced fertility – male (infertility and subfertility)*

Limited Evidence

  • Breast cancer*
  • Hepatocellular cancer (liver cancer)
  • Lung cancer*
  • Pancreatic cancer*
  • Peripheral neuropathy*
  • Prostate cancer*

Illnesses marked thus * have been suffered by Irish Air Corps personnel or their offspring.

Irish Air Corps Health & Safety officer ordered evidence of Carbon Monoxide risks destroyed.

In 1995 the Irish Air Corps commissioned an independent third party organisation to carry out air quality testing in the Engine Repair Flight building. ERF comprised the Engine Overhaul facility, the Non Destructive Testing workshop and the Machine shop. Avionics Squadron was located in the same physical building as the ERF and the open attic spaces meant  chemical vapours & fumes from either unit were free to flow in either direction.

The Avionics / ERF building was also less than 20m downwind from the 3m high Spray Paint Shop exhaust stack which exhausted benzene, hexamethylene diisocyanate, toluene and xylene.

Ambient Air Monitoring for Health & Safety at Work Report from the 2nd of August 1995 found that #Dichloromethane (also known as Methylene chloride) was found in some areas to be 175ppm. At the time The most stringent health and safety limits for #DCM were 50 ppm (TWA for 8 hours) and 126 ppm (STEL for 15 minutes).

Personnel, including other ranks employed in the Formation Safety Office, were never informed of these results. Avionics / ERF personnel were left in situ for a further 12 years before the workshops were finally condemned & demolished and needlessly exposed to #DCM and other chemicals.

Significantly Dichloromethane metabolises as Carbon Monoxide once inhaled but is lethal in many other different ways.  We have at least 10 untimely deaths of men who worked in this building alone, their average age of death was 49.3 years and the youngest was only 32.

*****

So we have one state body warning the general public about the dangers of Carbon Monoxide, while another state body hid evidence of a known carbon monoxide threat from personnel working in a heavily contaminated facility.

Delay – Deny – Die

Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Fuel

Abstract

We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3–5 years’ duration while working on or near the flight line.

Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n-hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed.

Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity.

Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel.

CASE REPORTS

Case 1: Military Flight Refueler

A37-year-old woman presented with several years of progressively worsening continuous dizziness, headache, and fatigue. The dizziness consisted of sensations of spinning, tilting, disequilibrium, and head fullness. She did not report tinnitus or hearing loss. She was employed as a military flight refueler and exposed to JP-8 vapors and exhaust while working full-time on and around a KC-135E tanker aircraft, a plane used for performing in-flight refueling missions. She worked in a large enclosed hangar that housed all but the tail section of the tanker aircraft. During inspection and maintenance of the aircraft, up to 9,750 gallons of fuel would be loaded. Jet fuel vapors were always present in the hangar due to venting, small leaks, and fuel residue. Fuel vapor concentrations were even greater when engine maintenance necessitated removal of fuel filters and fuel components, draining of fuel into buckets, and opening of fuel lines. She worked in engine maintenance with over 4 years of inhalational and dermal exposure to JP-4 and JP-8.

Her examination showed moderately impaired equilibrium to walk only three steps in tandem before taking a sidestep. Romberg testing revealed more sway during eye closure but no falling. Her medical and neurological examinations were normal. There was no spontaneous, gaze, or positional nystagmus. Qualitative head impulse test was not performed at that time.
Cases 2 and 3

The following two patients were employees in a small purchasing warehouse, located 75 feet south of the fight path, which was separated from the blast and heat emissions from jet aircraft engines by a metal-coated and chain-link fence. Neither air conditioning vents nor carpet had not been cleaned or replaced for over a decade. On inspection, the vents were found to be mal-functioning such that air was able to enter the building but unable to escape. Subsequent inspection by the U. S. Occupational Safety and Health Administration (OSHA) confirmed poor ventilation evidenced by carbon dioxide concentrations >1,500ppm (nor-mal <1,000 ppm according to the U.S. Department of Labor). Hydrocarbons discovered in the carpet via an independent analysis using gas chromatography/mass spectrometry included undecane (C11), dodecane (C12), tridecane (C13), tetradecane (C14), and toluene (C8)—all known JP-8 constituents (2). The chemicals present in the office carpet likely reflected poor indoor air quality. Vapor, aerosol, dermal, and eye absorption of JP-8 are presumed.

Case 2: Warehouse Employe 1

A 45-year-old female contracting officer for the National Guard reported several years of imbalance, headache, fatigue, eye and skin irritation, coughing, sinus congestion, recurrent urinary tract infections, chest tightness, irritability, depression, shortness of breath, palpitations, and numbness. She described her dizziness as an intermittent floating and a rightward tilting sensation with imbalance lasting minutes to hours without any particular pattern. She had a history of asthma and allergies including reaction to aspirin causing urticaria and airway obstruction. In 1998, she developed syncope and dizziness though no specific cause was found. She started working in the building in 1994 and worked there full-time for 5 years.

Case 3: Warehouse Employe 2

A 54-year-old female National Guard contract specialist presented with 2 years of intermittent dizziness, blurred vision, and occasional palpitations. Dizziness was experienced at least 3 days a week. She reported intermittent problems with erratic heart beats, cough, sneezing, headaches, fatigue, recurrent sinus infections, upper respiratory tract, and bladder infections. She worked in the purchasing warehouse full-time for 3 years. When away from the workplace her symptoms were improved. After moving with her colleagues into a new building, the frequency of dizziness was lessened.

Human Exposure and Absorption of Jet Fuel

Military duties such as fuel transportation, aircraft fueling and defueling, aircraft maintenance, cold aircraft engine starts, maintenance of equipment and machinery, use of tent heaters, and cleaning or degreasing with fuel may result in jet fuel exposure. Fuel handlers, mechanics, flight line personnel, especially crew chiefs, and even incidental workers remain at risk for developing illness secondary to chronic JP-8 fuel exposure in aerosol, vapor or liquid form. JP-8 is one of the most common occupational chemical exposures in the US military (1).

The Air Force has set recommended exposure limits for JP-8 at 63ppm (447mg/m3 as an 8-h time-weighted average) (22).In addition to exposure by JP-8 vapor inhalation, toxicity may also occur by absorption through the skin, which is proportional to the amount of skin exposed and the duration of exposure (23, 24). In addition to the standard operating procedure and safety guidelines, double gloving, immediate onsite laundering of contaminated/soiled jumpsuits, regular washing of safety goggles and masks, reduced foam handling time, smoking cessation, adequate cross ventilation, and frequent shift breaks may reduce the overall risk of JP-8 induced illness

At this time, OSHA has not determined a legal limit for jet fuels in workroom air. The U.S. National Institute of Occupational Safety and Health set a recommended limit of 100mg/m3 for kerosene in air averaged over a 10-h work day. Multi-organ toxicity has been documented from JP-8 exposure in animal experiments over the past 15 years. More recently, toxicology researchers are investigating the adverse tissue effects of JP-8 jet fuel in concentrations well below permissible exposure limits.

Ultimately, the new data may help us to better understand the emerging genetic, metabolic and inflammatory mechanisms underpinning JP-8 cellular toxicity—including auditory and vestibular toxicity—and lead to a reassessment of the safe JP-8 exposure limits (25, 26).

CONCLUSION

Bilateral vestibular dysfunction in these three patients with prolonged vapor and dermal JP-8 fuel exposure should raise awareness in people with occupations that expose them to jet fuels, liquid hydrocarbons, or organic solvents. Dizziness and mild imbalance may be the main initial symptoms. Early recognition and limiting further exposure as well as treatment with vestibular therapy (32) may improve their function and quality of life


Bilateral Vestibular Dysfunction… (PDF Download Available)
. Available from: https://www.researchgate.net/publication/325175906_Bilateral_Vestibular_Dysfunction_Associated_With_Chronic_Exposure_to_Military_Jet_Propellant_Type-Eight_Jet_Fuel

*****

Difference between Jet A1 & JP-8

Jet fuel, aviation turbine fuel (ATF), or avtur, is a type of aviation fuel designed for use in aircraft powered by gas-turbine engines. It is colorless to straw-colored in appearance. The most commonly used fuels for commercial aviation are Jet A and Jet A-1, which are produced to a standardized international specification. The only other jet fuel commonly used in civilian turbine-engine powered aviation is Jet B, which is used for its enhanced cold-weather performance.

Jet fuel is a mixture of a large number of different hydrocarbons. The range of their sizes (molecular weights or carbon numbers) is defined by the requirements for the product, such as the freezing or smoke point. Kerosene-type jet fuel (including Jet A and Jet A-1) has a carbon number distribution between about 8 and 16 (carbon atoms per molecule); wide-cut or naphtha-type jet fuel (including Jet B), between about 5 and 15.[1]

Additives

The DEF STAN 91-91 (UK) and ASTM D1655 (international) specifications allow for certain additives to be added to jet fuel, including:[13][14]

  • Antioxidants to prevent gumming, usually based on alkylated phenols, e.g., AO-30, AO-31, or AO-37; 
  • Antistatic agents, to dissipate static electricity and prevent sparking; Stadis 450, with dinonylnaphthylsulfonic acid (DINNSA) as a component, is an example
  • Corrosion inhibitors, e.g., DCI-4A used for civilian and military fuels, and DCI-6A used for military fuels;
  • Fuel system icing inhibitor (FSII) agents, e.g., Di-EGME; FSII is often mixed at the point-of-sale so that users with heated fuel lines do not have to pay the extra expense.
  • Biocides are to remediate microbial (i.e., bacterial and fungal) growth present in aircraft fuel systems. Currently, two biocides are approved for use by most aircraft and turbine engine original equipment manufacturers (OEMs); Kathon FP1.5 Microbiocide and Biobor JF.[15]
  • Metal deactivator can be added to remediate the deleterious effects of trace metals on the thermal stability of the fuel. The one allowable additive is N,N’-disalicylidene 1,2-propanediamine.

As the aviation industry’s jet kerosene demands have increased to more than 5% of all refined products derived from crude, it has been necessary for the refiner to optimize the yield of jet kerosene, a high value product, by varying process techniques. New processes have allowed flexibility in the choice of crudes, the use of coal tar sands as a source of molecules and the manufacture of synthetic blend stocks. Due to the number and severity of the processes used, it is often necessary and sometimes mandatory to use additives. These additives may, for example, prevent the formation of harmful chemical species or improve a property of a fuel to prevent further engine wear.

https://en.wikipedia.org/wiki/Jet_fuel

JP-8, or JP8 (for “Jet Propellant 8”) is a jet fuel, specified and used widely by the US military. It is specified by MIL-DTL-83133 and British Defence Standard 91-87, and similar to commercial aviation’s Jet A-1, but with the addition of corrosion inhibitor and anti-icing additives.

A kerosene-based fuel, JP-8 is projected to remain in use at least until 2025. It was first introduced at NATO bases in 1978. Its NATO code is F-34.

https://en.wikipedia.org/wiki/JP-8

Ototoxicity – Ototoxicants in the environment and workplace

Ototoxicity is the property of being toxic to the ear (oto-), specifically the cochlea or auditory nerve and sometimes the vestibular system, for example, as a side effect of a drug.

The effects of ototoxicity can be reversible and temporary, or irreversible and permanent. It has been recognized since the 19th century.[1] There are many well-known ototoxic drugs used in clinical situations, and they are prescribed, despite the risk of hearing disorders, to very serious health conditions.[2]

Ototoxic drugs include antibiotics such as gentamicin, loop diuretics such as furosemide and platinum-based chemotherapy agents such as cisplatin. A number of nonsteroidal anti-inflammatory drugs (NSAIDS) have also been shown to be ototoxic.[3][citation needed]

This can result in sensorineural hearing loss, dysequilibrium, or both. Some environmental and occupational chemicals have also been shown to affect the auditory system and interact with noise.[4]

Signs and symptoms

Symptoms of ototoxicity include partial or profound hearing loss, vertigo, and tinnitus.[5]

The cochlea is primarily a hearing structure situated in the inner ear. It is the snail-shaped shell containing several nerve endings that makes hearing possible.[6] Ototoxicity typically results when the inner ear is poisoned by medication that damages the cochlea, vestibule, semi-circular canals, or the auditory/ vestibulocochlear nerve. The damaged structure then produces the symptoms the patient presents with. Ototoxicity in the cochlea may cause hearing loss of the high-frequency pitch ranges or complete deafness, or losses at points between.[7] It may present with bilaterally symmetrical symptoms, or asymmetrically, with one ear developing the condition after the other or not at all.[7] The time frames for progress of the disease vary greatly and symptoms of hearing loss may be temporary or permanent.[6]

The vestibule and semi-circular canal are inner-ear components that comprise the vestibular system. Together they detect all directions of head movement. Two types of otolith organs are housed in the vestibule: the saccule, which points vertically and detects vertical acceleration, and the utricle, which points horizontally and detects horizontal acceleration. The otolith organs together sense the head’s position with respect to gravity when the body is static; then the head’s movement when it tilts; and pitch changes during any linear motion of the head. The saccule and utricle detect different motions, which information the brain receives and integrates to determine where the head is and how and where it is moving.

The semi-circular canals are three bony structures filled with fluid. As with the vestibule, the primary purpose of the canals is to detect movement. Each canal is oriented at right angles to the others, enabling detection of movement in any plane. The posterior canal detects rolling motion, or motion about the X axis; the anterior canal detects pitch, or motion about the Y axis; the horizontal canal detects yaw motion, or motion about the Z axis. When a medication is toxic in the vestibule or the semi-circular canals, the patient senses loss of balance or orientation rather than losses in hearing. Symptoms in these organs present as vertigo, difficulties walking in low light and darkness, disequilibrium, oscillopsia among others.[7] Each of these problems is related to balance and the mind is confused with the direction of motion or lack of motion. Both the vestibule and semi-circular canals transmit information to the brain about movement; when these are poisoned, they are unable to function properly which results in miscommunication with the brain.

When the vestibule and/or semi-circular canals are affected by ototoxicity, the eye can also be affected. Nystagmus and oscillopsia are two conditions that overlap the vestibular and ocular systems. These symptoms cause the patient to have difficulties with seeing and processing images. The body subconsciously tries to compensate for the imbalance signals being sent to the brain by trying to obtain visual cues to support the information it is receiving. This results in that dizziness and “woozy” feeling patients use to describe conditions such as oscillopsia and vertigo.[7]

Cranial nerve VIII, is the least affected component of the ear when ototoxicity arises, but if the nerve is affected, the damage is most often permanent. Symptoms present similar to those resulting from vestibular and cochlear damage, including tinnitus, ringing of the ears, difficulty walking, deafness, and balance and orientation issues.

Ototoxicants in the environment and workplace

Ototoxic effects are also seen with quinine, pesticides, solvents, asphyxiants (such as carbon monoxide) and heavy metals such as mercury and lead.[4][5][36] When combining multiple ototoxicants, the risk of hearing loss becomes greater.[37] As these exposures are common, this hearing impairment can affects many occupations and industries.[38]

Ototoxic chemicals in the environment (from contaminated air or water) or in the workplace interact with mechanical stresses on the hair cells of the cochlea in different ways. For organic solvents such as toluene, styrene or xylene, the combined exposure with noise increases the risk of occupational hearing loss in a synergistic manner.[4][39] The risk is greatest when the co-exposure is with impulse noise.[40][41] Carbon monoxide has been shown to increase the severity of the hearing loss from noise.[39] Given the potential for enhanced risk of hearing loss, exposures and contact with products such as paint thinners, degreasers, white spirits, exhaust, should be kept to a minimum. Noise exposures should be kept below 85 decibels, and the chemical exposures should be below the recommended exposure limits given by regulatory agencies.

Drug exposures mixed with noise potentially lead to increased risk of ototoxic hearing loss. Noise exposure combined with the chemotherapeutic cisplatin puts individuals at increased risk of ototoxic hearing loss.[33] Noise at 85 dB SPL or above added to the amount of hair cell death in the high frequency region of the cochlea In chinchillas.[42]

The hearing loss caused by chemicals can be very similar to a hearing loss caused by excessive noise. A 2018 informational bulletin by the US Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) introduces the issue, provides examples of ototoxic chemicals, lists the industries and occupations at risk and provides prevention information.[43]

Treatment

No specific treatment may be available, but withdrawal of the ototoxic drug may be warranted when the consequences of doing so are less severe than those of the ototoxicity.[5] Co-administration of anti-oxidants may limit the ototoxic effects.[33]

Ototoxic monitoring during exposure is recommended by the American Academy of Audiology to allow for proper detection and possible prevention or rehabilitation of the hearing loss through a cochlear implant or hearing aid. Monitoring can be completed through performing otoacoustic emissions testing or high frequency audiometry. Successful monitoring includes a baseline test before, or soon after, exposure to the ototoxicant. Follow-up testing is completed in increments after the first exposure, throughout the cessation of treatment. Shifts in hearing status are monitored and relayed to the prescribing physician to make treatment decisions.[44]

It is difficult to distinguish between nerve damage and structural damage due to similarity of the symptoms. Diagnosis of ototoxicity typically results from ruling out all other possible sources of hearing loss and is often the catchall explanation for the symptoms. Treatment options vary depending on the patient and the diagnosis. Some patients experience only temporary symptoms that do not require drastic treatment while others can be treated with medication. Physical therapy may prove useful for regaining balance and walking abilities. Cochlear implants are sometimes an option to restore hearing. Such treatments are typically taken to comfort the patient, not to cure the disease or damage caused by ototoxicity. There is no cure or restoration capability if the damage becomes permanent,[45][46] although cochlear nerve terminal regeneration has been observed in chickens,[47] which suggests that there may be a way to accomplish this in humans.

See full Wikipedia article below

Article from US National Library of Medicine National Institutes of Health

Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel

Dail Éireann Written Answers 26/09/17 – Department of Defence – Protected Disclosures

Aengus Ó Snodaigh (Dublin South Central, Sinn Fein)

548. To ask the Taoiseach and Minister for Defence if he has acted on the information relayed to him by a whistleblower that specifically named the Defence Forces official who allegedly ordered the destruction of health and safety documents; and if he will make a statement on the matter. [40485/17]

Paul Kehoe (Wexford, Fine Gael)

As I have previously indicated to the House, this matter was raised with me in correspondence where certain allegations were made that the documents had been destroyed. The correspondence in question was also addressed to the Chief of Staff and to the Deputy. I requested a report from the Chief of Staff on the actions taken on foot of the accusation.

He has informed me that the officer named met with the General Officer Commanding the Air Corps. The officer concerned has refuted the allegations made and it should further be noted that documents referred to were not military documents, nor did they carry any military security classification.

*****

Can we suggest that Minister Kehoe and the Chief of Staff meet with the NCO who was ordered to destroy the Health & Safety documents to hear his testimony first hand.

Can we also suggest that the Minister & Chief of Staff meet with the Health & Safety officer who commissioned the reports to determine his recollection of the contents of the Tech Stores Air Quality Report & the Ramp Carbon Monoxide report.

Perhaps they might also ask the Health & Safety officer why the adverse findings in the 1995 ERF report and the recommendations in the 1997 Forbairt report were not communicated to lower ranks and why the recommendations for PPE and chemical training were not acted upon for 20 years.

DELAY – DENY – DIE

Dáil Éireann Written Answers 20/06/17 – Defence Forces – No investigation into missing reports

Aengus Ó Snodaigh (Dublin South Central, Sinn Fein)

To ask the Taoiseach and Minister for Defence if he will instruct an independent third party to carry out an investigation into the reason Forbairt inspection reports dating from the 1990s cannot be found in view of his department’s failure to locate the Forbairt files and in further view of the possible significance of these missing documents; and if he will make a statement on the matter. [26895/17]

Paul Kehoe (Wexford, Fine Gael)

As I indicated to the Deputy in my letter of 17 May 2017, I was advised by the Military Authorities that there was a report on measuring CO fumes from aircraft complied by Forbairt in 1995 and a further report on monitoring air contaminants in workshops in 1997, which was also complied by Forbairt.

Unfortunately, following an extensive search and the Military Authorities having consulted with Enterprise Ireland (which superseded Forbairt) and having also conducted a search within the Department it has not been possible to locate these reports.

The military authorities have indicated that the Defence Forces have neither a hard copy record nor an electronic copy of the Forbairt Reports. The Military Authorities have indicated that there are a range of potential causes for the loss of the reports such as the changeover of electronic recording systems in 2004 or that the reports were misplaced over time. However this is purely speculative.

It is not proposed to have an independent third party carry out an investigation into the reasons the Forbairt reports cannot be found.

Air Corps controversy: Minister says reports on toxicity at Baldonnel “can’t be found”

At least six people are taking action against the State for alleged exposure to chemicals whilst in the Air Corps.

Reports detailing the levels of toxicity in the air at Baldonnel Airfield have disappeared, The Journal.ie can reveal.

A letter seen by this publication, which was sent to a TD, says two reports into the measurement of potentially dangerous levels of carbon monoxide and other airborne toxins cannot be located by the Defence Forces.

The letter from Paul Kehoe, Minister of State with responsibility for Defence, reads:

“I have now been advised by the military that there was a report on measuring CO (Carbon Monoxide) fumes from aircraft compiled by Forbairt [which later became Enterprise Ireland] in 1995 and a further report on monitoring air contaminants in workshops in 1997 which was also compiled by Forbairt.

“In addition, an internal report was compiled by the Air Corps in 2014 in relation to a litigation case and in 2017, an occupational air survey was carried out by an independent environmental services company.

“Unfortunately, following an extensive search and their having consulted with Enterprise Ireland (which superseded Forbairt), I am advised by the military authorities that it has not been possible to locate the earlier Forbairt reports.”

Read more on The Journal website here.