Cresol / Cresylic Acid – Guide to Hazardous Air Pollutants used by the Irish Air Corps

Cresol / Cresylic Acid

o-CRESOL, m-CRESOL, p-CRESOL

Cresylic Acid spilled all over the floor of the NDT shop of ERF and indeed dribbling down the wall from the extractor fan.

CAS  1319-77-3 , 95-48-7, 108-39-4, 106-44-5

Hazard Summary

Ambient air contains low levels of cresols from automobile exhaust, power plants, and oil refineries. Acute (short-term) inhalation exposure by humans to mixed cresols results in respiratory tract irritation, with symptoms such as dryness, nasal constriction, and throat irritation.  Mixed cresols are also strong dermal irritants.

No information is available on the chronic (long-term) effects of mixed cresols in humans, while animal studies have reported effects on the blood, liver, kidney, and central nervous system (CNS), and reduced body weight, from oral and inhalation exposure to mixed cresols.

Several animal studies suggest that o-cresol, m-cresol, and p-cresol may act as tumor promotors.  EPA has classified o-cresol, m-cresol, and p-cresol as Group C, possible human carcinogens.

Please Note: The main sources of information for this fact sheet are EPA's IRIS (4), which contains information on oral chronic toxicity and the RfD, and the carcinogenic effects of cresols, and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Cresols. (1)

Uses

  • Mixed cresols are used as disinfectants, preservatives, and wood preservatives. (1)
  • o-Cresol is used as a solvent, disinfectant, and chemical intermediate. (1)
  • m-Cresol is used to produce certain herbicides, as a precursor to the pyrethroid insecticides, to produce antioxidants, and to manufacture the explosive, 2,4,6-nitro-m-cresol. (1)
  • p-Cresol is used largely in the formulation of antioxidants and in the fragrance and dye industries. (1)

Sources and Potential Exposure

  • Mixed cresols may be found in ambient air; sources are car exhaust, electrical power plants, municipal solid waste incinerators, oil refineries, and cigarettes. (1)
  • People in residential areas where homes are heated with coal, oil, or wood may be exposed to mixed cresols in the air. (1)
  • Some foods, such as tomatoes, ketchup, asparagus, cheeses, butter, bacon, and smoked foods, as well as beverages, such as red wine, raw and roasted coffee and black tea, contain mixed cresols. (1)
  • Occupational exposure to mixed cresols may also occur at workplaces where mixed cresols and/or cresol containing products are produced or used. (1)

Assessing Personal Exposure

  • Mixed cresols can be measured in the urine of exposed individuals.

Health Hazard Information

Acute Effects:

  • Acute inhalation exposure by humans to mixed cresols results in respiratory tract irritation, with symptoms such as dryness, nasal constriction, and throat irritation.  Mixed cresols are also strong dermal irritants. Ingestion of high levels of mixed cresols by humans has resulted in effects on the respiratory system, gastrointestinal system, blood, liver, kidney, and CNS. (1,2)
  • Animal studies have reported respiratory tract and eye irritation, and effects on the liver, kidney, and CNS from acute inhalation exposure to mixed cresols. (1)
  • Acute animal tests in rats have shown mixed cresols to have moderate acute toxicity, while o-cresol, m-cresol, and p-cresol have been shown to have high acute toxicity from oral exposure. (3)

Chronic Effects (Noncancer):

  • No information is available on the chronic effects of mixed cresols in humans. (1)
  • Animal studies have reported effects on the blood, liver, kidney, and CNS, as well as reduced body weight, from oral and inhalation exposure to mixed cresols. (1,5)
  • EPA has not established a Reference Concentration (RfC) or a Reference Dose (RfD) for mixed cresols. (4)
  • The California Environmental Protection Agency 3  (CalEPA) has established a chronic reference exposure level of 0.004 milligrams per cubic meter (mg/m ) for mixed cresols based on bone marrow effects in rats. The CalEPA reference exposure level is a concentration at or below which adverse health effects are not likely to occur. It is not a direct estimator of risk, but rather a reference point to gauge the potential effects. At lifetime exposures increasingly greater than the reference exposure level, the potential for adverse health effects increases. (5)
  • EPA has not established an RfC for o-, m-, or p-cresol.  (5-7)
  • The RfD for o-cresol and m-cresol is 0.05 milligrams per kilogram body weight per day (mg/kg/d) based on decreased body weights and neurotoxicity in rats. The RfD is an estimate (with uncertainty spanning
    perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious noncancer effects during a lifetime. (5,6)
  • EPA has high confidence in the studies on which the RfDs are based because they provided adequate toxicological endpoints that included both general toxicity and neurotoxicity; medium confidence in the database because there are adequate supporting subchronic studies but lacking chronic toxicity and reproductive studies; and, consequently, medium confidence in the RfD. (5,6)
  • The provisional RfD for p-cresol is 0.005 mg/kg/d based on neurological and respiratory effects in rabbits. The provisional RfD is a value that has had some form of Agency review, but it does not appear on IRIS. (8)

Reproductive/Developmental Effects:

  • No information is available on the reproductive or developmental effects of mixed cresols in humans. (1)
  • Animal studies have reported developmental effects, but only at maternally toxic doses, and no reproductive effects from oral exposure to mixed cresols. (1)

Cancer Risk:

  • Only anecdotal information is available on the carcinogenic effects of mixed cresols in humans. (4-7)
  • The only available oral animal study is a 13-week study that suggested that p-cresol may act as a promotor for tumors of the forestomach. (1)
  • Several dermal animal studies have suggested that o-cresol, m-cresol, and p-cresol may act as tumor promotors. (1,4-7)
  • EPA has classified o-cresol, m-cresol, and p-cresol as Group C, possible human carcinogens. (5-7)

Physical Properties

  • Mixed cresols are colorless solids, but usually they occur as a brown liquid mixture. (1)
  • Mixed cresols have a medicinal odor; the odor thresold for m-cresol is 0.00028 parts per million (ppm). (1,9)
  • The chemical formula for cresol is C 7 H 8 O, and the molecular weight is 108.14 g/mol. (1)
  • The primary synonym for o-cresol is 2-methylphenol; m-cresol is 3-methylphenol, and p-cresol is 4-methylphenol. (5-7)
  • The vapor pressures, at 25 °C, for o-cresol, m-cresol, and p-cresol are 0.299 mm Hg, 0.138 mm Hg, and 0.11 mm Hg, respectively. (1)
  • The octanol/water partition coefficients (log K ow) for o-cresol, m-cresol, and p-cresol are 1.95, 1.96, and 1.94, respectively. (1)

Read the full EPA PDF on the above Hazardous Air Pollutant with references below.

*****

Relavance to personnel who served in the Air Corps

  1. Cresylic Acid is  component of Ardrox 666
  2. Cresols are consitituent chemicals of turbine engine oils. e.g. Tri-cresyl phosphate which is an organophosphate.

There are likely many more chemicals used by the Air Corps that contain Benzene. If you know of some let us know in the comments section.

Benzene – Guide to Hazardous Air Pollutants used by the Irish Air Corps

Benzene

CAS  71-43.2

Hazard Summary

Benzene is found in the air from emissions from burning coal and oil, gasoline service stations, and motor vehicle exhaust. Acute (short-term) inhalation exposure of humans to benzene may cause drowsiness,  dizziness, headaches, as well as eye, skin, and respiratory tract irritation, and, at high levels, unconsciousness. Chronic (long-term) inhalation exposure has caused various disorders in the blood, including reduced numbers of red blood cells and aplastic anemia, in occupational settings.   Reproductive effects have been reported for women exposed by inhalation to high levels, and adverse effects on the developing fetus have been observed in animal tests. Increased incidence of leukemia (cancer of the tissues that form white blood cells) have been observed in humans occupationally exposed to benzene. EPA has classified benzene as known human carcinogen for all routes of exposure.

Please Note: The main sources of information for this fact sheet are the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Benzene (1) and EPA's Integrated Risk Information System (IRIS) (4),which contains information on the health effects of benzene including the unit cancer risk for inhalation
exposure.

Uses

  • Benzene is used as a constituent in motor fuels; as a solvent for fats, waxes, resins, oils, inks, paints, plastics, and rubber; in the extraction of oils from seeds and nuts; and in photogravure printing. It is also used as a chemical intermediate. Benzene is also used in the manufacture of detergents, explosives, pharmaceuticals, and dyestuffs. (1,2,6)

Sources and Potential Exposure

  • Individuals employed in industries that manufacture or use benzene may be exposed to the highest levels of benzene. (1)
  • Benzene is found in emissions from burning coal and oil, motor vehicle exhaust, and evaporation from gasoline service stations and in industrial solvents. These sources contribute to elevated levels of benzene in the ambient air, which may subsequently be breathed by the public. (1)
  • Tobacco smoke contains benzene and accounts for nearly half the national exposure to benzene. (1)
  • Individuals may also be exposed to benzene by consuming contaminated water. (1)

Assessing Personal Exposure

Measurement of benzene in an individual’s breath or blood or the measurement of breakdown products in the urine (phenol) can estimate personal exposure. However, the tests must be done shortly after exposure
and are not helpful for measuring low levels of benzene. (1)

Health Hazard Information

Acute Effects:

  • Coexposure to benzene with ethanol (e.g., alcoholic beverages) can increase benzene toxicity in humans. (1)
  • Neurological symptoms of inhalation exposure to benzene include drowsiness, dizziness, headaches, and Neurological symptoms of inhalation exposure to benzene include drowsiness, dizziness, headaches, and unconsciousness in humans.  Ingestion of large amounts of benzene may result in vomiting, dizziness, and convulsions in humans. (1)
  • Exposure to liquid and vapor may irritate the skin, eyes, and upper respiratory tract in humans.  Redness and blisters may result from dermal exposure to benzene. (1,2)
  • Animal studies show neurologic, immunologic, and hematologic effects from inhalation and oral exposure to benzene. (1)
  • Tests involving acute exposure of rats, mice, rabbits, and guinea pigs have demonstrated benzene to have low acute toxicity from inhalation, moderate acute toxicity from ingestion, and low or moderate acute toxicity from dermal exposure. (3)
  • The reference concentration for benzene is 0.03 mg/m3 based on hematological effects in humans. The RfC is an estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation
    exposure to the human population (including sensitive groups) that is likely to be without appreciable risk deleterious noncancer effects over a lifetime. (4)

Chronic Effects (Noncancer):

  • Chronic inhalation of certain levels of benzene causes disorders in the blood in humans. Benzene specifically affects bone marrow (the tissues that produce blood cells). Aplastic anemia (a risk factor for acute nonlymphocytic leukemia), excessive bleeding, and damage to the immune system (by changes in blood levels of antibodies and loss of white blood cells) may develop. (1)
  • In animals, chronic inhalation and oral exposure to benzene produces the same effects as seen in humans. (1)
  • Benzene causes both structural and numerical chromosomal aberrations in humans. (1)
  • EPA has established an oral Reference Dose (RfD) for benzene of 0.004 milligrams per kilogram per day (mg/kg/d) based on hematological effects in humans. The RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious noncancer effects during a lifetime. It is not a direct estimator of risk, but rather a reference point to gauge the potential for effects. At exposures increasingly greater than the RfD, the potential for adverse health effects increases. Lifetime exposure above the RfD does not imply that an adverse health effect would necessarily occur. (4)
  • EPA has established a Reference Concentration (RfC) of 0.03 milligrams per cubic meter (0.03 mg/m3) for benzene based on hematological effects in humans. The RfC is an inhalation exposure concentration at or below which adverse health effects are not likely to occur. It is not a direct estimator of risk, but rather a reference point to gauge the potential for effects. At lifetime exposures increasingly greater than the reference exposure level, the potential for adverse health effects increases. (4)

Reproductive/Developmental Effects:

  • There is some evidence from human epidemiological studies of reproductive and developmental toxicity of benzene, however the data do not provide conclusive evidence of a link between exposure and effect. (4)
    Animal studies have provided limited evidence that exposure to benzene may affect reproductive organs, however these effects were only observed at exposure levels over the maximum tolerated dose. (4)
  • Adverse effects on the fetus, including low birth weight, delayed bone formation, and bone marrow damage, have been observed where pregnant animals were exposed to benzene by inhalation.(4)

Cancer Risk:

  • Increased incidence of leukemia (cancer of the tissues that form white blood cells) has been observed in humans occupationally exposed to benzene. (1,4)
  • EPA has classified benzene as a Group A, known human carcinogen. (4)
  • EPA uses mathematical models, based on human and animal studies,to estimate the probability of a person developing cancer from breathing air containing a specified concentration of a chemical. EPA calculated a range of 2.2 x 10 -6  to 7.8 x 10 -6  as the increase in the lifetime risk of an individual who is continuously exposed to 1 µg/m3 of benzene in the air over their lifetime.
  • EPA estimates that, if an individual were to continuously breathe the air containing benzene at an average of 0.13 to 0.45 µg/m 3  (1.3×10 -4  to 4.5x -4mg/m 3 ) over his or her entire lifetime, that person would theoretically have no more than a one-in-a-million increased chance of developing cancer as a direct result of continuously breathing air containing this chemical. Similarly, EPA estimates that continuously breathing air containing 1.3 to 4.5 µg/m 3 (1.3×10 -3  to 4.5×10 -3  mg/m 3 ) would result in not greater than a one-in-ahundred thousand increased chance of developing cancer, and air containing 13 to 45 µg/m3  (1.3 x 10 – 2  to 4.5 x 10-2 mg/m3) would result in not greater than a one-in-ten thousand increased chance of developing cancer. For a detailed discussion of confidence in the potency estimates, please see IRIS.(4)
  • EPA has calculated an oral cancer slope factor ranging from 1.5 x 10-2  to 5.5 x 10 -2 (mg/kg/d)-1  that is an extrapolation from inhalation dose-response data. (4)

Physical Properties

  • The chemical formula for benzene is C6H6, and it has a molecular weight of 78.11 g/mol. 4) Benzene occurs as a volatile, colorless, highly flammable liquid that dissolves easily in water. (1,7)
  • Benzene has a sweet odor with an ASTDR reported odor threshold of 1.5 ppm (5 mg/m3).
  • The vapor pressure for benzene is 95.2 mm Hg at 25 °C, and it has a log octanol/water partition coefficient (log Kow) of 2.13. (1)

Read the full EPA PDF on the above Hazardous Air Pollutant with references below.

*****

Relavance to personnel who served in the Air Corps

  1. Benzene is a component of Jet A1 (AVTUR) and/or Jet A1 exhaust 
  2. Benzene is a component of 100LL (AVGAS) and/or 100LL exhaust
  3. Cellulose Thinners used in spray painting contain Benzene
  4. Akzo Nobel Hardner S66/22R contains <25% Benzene
  5. Mastinox 6856k contains 1-3% Benzene

There are likely many more chemicals used by the Air Corps that contain Benzene. If you know of some let us know in the comments section.

Asbestos – Guide to Hazardous Air Pollutants used by the Irish Air Corps

Asbestos

CAS  1332-21-4

Hazard Summary

Asbestos production and use has decreased dramatically over the years in the United States. Exposure to asbestos may occur from ambient air, indoor air, or water. Effects on the lung are a major health concern from asbestos, as chronic (long-term) exposure to asbestos in humans via inhalation can result in a lung disease termed asbestosis. Asbestosis is characterized by shortness of breath and cough and may lead to severe impairment of respiratory function. Cancer is also a major concern associated with asbestos exposure, as inhalation exposure causes lung cancer and mesothelioma (a rare cancer of the thin membranes lining the abdominal cavity and surrounding internal organs), and possibly stomach, laryngeal, and colorectal cancer. EPA has classified asbestos as a Group A, known human carcinogen.

Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (2), which contains information on the carcinogenic effects of asbestos including the unit cancer risk for inhalation exposure, and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Asbestos. (1)

Uses

  • Asbestos production and use in the U.S. has decreased dramatically over the years due to healthconcerns and regulations banning its use. (1)
  • U.S. production of asbestos decreased from 300 million pounds in 1973 to 6 million pounds in 2002. (3)
  • In 2010, there were two U.S. suppliers of asbestos and most of the asbestos used in the U.S. is imported from Canada. (3)
  • Asbestos has been used in building materials, paper products, asbestos-cement products, friction products, textiles, packings and gaskets, and asbestos-reinforced plastics. (1,4)
  • Many uses have been prohibited, including the spraying of asbestos-containing material on buildings and structures for fireproofing, insulation and decorative purposes, asbestos inclusion in patching compounds and asbestos heat shields in hair dryers. Asbestos substitutes continue to be developed. For example, nonasbestos friction materials are currently being used in disc brake pads, and substitutes have been developed for drum brake linings. (1)

Sources and Potential Exposure

  • Airborne exposure to asbestos may occur through the erosion of natural deposits in asbestos bearing rocks, from a variety of asbestos-related industries, or from clutches and brakes on cars and trucks. The concentrations in outdoor air are highly variable. (1,4)
  • Asbestos has been detected in indoor air, where it is released from a variety of building materials such as insulation and ceiling and floor tiles. It is only released, however, when these building materials are damaged or disintegrate. (1)
  • Asbestos may be released into water from a number of sources, including erosion of natural deposits, corrosion from asbestos-cement pipes, and disintegration of asbestos roofing materials with subsequent transport into sewers. (1,4)

Health Hazard Information

Acute Effects:

  • No studies were located on the acute (short-term) toxicity of asbestos in animals or humans. (1)

Chronic Effects (Noncancer):

  • Chronic inhalation exposure to asbestos in humans can lead to a lung disease called asbestosis, which consists of a diffuse fibrous scarring of the lungs. Symptoms of asbestosis include shortness of breath, difficulty in breathing, and coughing. Asbestosis is a progressive disease, i.e., the severity of symptoms tends to increase with time, even after the exposure has stopped. In severe cases, this disease can lead to death, due to impairment of respiratory function. (1,2)
  • Other effects from asbestos exposure via inhalation in humans include pulmonary hypertension and immunological effects. (1,2)
  • Feeding studies in animals exposed to high doses of asbestos have not detected any evidence of adverse toxic effects. (1,2)
  • EPA has not established a Reference Concentration (RfC) or a Reference Dose (RfD) for asbestos. (2)

Reproductive/Developmental Effects:

  • No studies were located on the developmental or reproductive effects of asbestos in animals or humans via inhalation. (1)
  • Birth defects were not noted in the offspring of animals exposed to asbestos in the diet during pregnancy. (1)
  • No effects on fertility were observed in animals exposed to asbestos in the diet during breeding, pregnancy, and lactation. (1)

Cancer Risk:

  • A large number of occupational studies have reported that exposure to asbestos via inhalationcauses lung cancer and mesothelioma (a rare cancer of the membranes lining the abdominal cavity and surrounding internal organs). (1,2,3)
  • Individuals who smoke and are also exposed to asbestos have a greater than additive increased risk of developing lung cancer. (1,2,3)
  •  Long and intermediate-range asbestos fibers (>5 micrometers (µm)) appear to be more carcinogenic than short fibers (<5 µm). (1)
  • Some occupational studies have reported an increased risk of stomach, laryngeal, or colorectal cancer from asbestos exposure. However, the data are not as strong as that for lung cancer and mesothelioma. (1)
  • Epidemiological studies have not found a clear association between asbestos exposure in drinking water and an increased risk of stomach cancer. (1,2,3)
  • A series of large-scale lifetime feeding studies in animals reported that exposure to intermediate-range asbestos fibers increased the incidence of a benign tumor of the large intestine in male rats, while short-range asbestos fibers showed no significant increase in tumor incidence. (1)
  • EPA has classified asbestos as Group A, human carcinogen. (2)
  • EPA uses mathematical models, based on human and animal studies, to estimate the probability of a person developing cancer from breathing air containing a specified concentration of a chemical. EPA calculated an inhalation unit risk estimate of 2.3 × 10-1 (fibers/cm3)-1. EPA eestimates that, if an individual were to continuously breathe air containing asbestos at an average of 0.000004 fibers/cm3 over his or her entire lifetime, that person would theoretically have no more than a one-in-a-million  increased chance of developing cancer as a direct result of breathing air containing this chemical. Similarly, EPA estimates that breathing air containing 0.00004 fibers/cm3 would result in not greater than a one-in-a-hundred thousand increased chance of developing cancer, and air containing 0.0004 fibers/cm3 would result in not greater than a one-in-ten-thousand increased chance of developing cancer. (2)

Physical Properties

  • Asbestos is the name applied to a group of six different fibrous silicate minerals that occur naturally in the environment. (1)
  • There are two groups of asbestos minerals: serpentine and amphibole. There are also nonfibrous forms of serpentine and amphibole which are not asbestos. (1)
  • Serpentine asbestos are relatively long and flexible crystalline fibers that may be woven, and includes the mineral chrysotile, and amphibole asbestos are more brittle than serpentine asbestos and includes the minerals amosite, crocidolite, tremolite, anthophyllite, and actinolite. (1)
  • Asbestos is neither volatile nor soluble; however, small fibers may occur in suspension in both air and water. (1)

Read the full EPA PDF on the above Hazardous Air Pollutant with references below.

*****

Relavance to personnel who served in the Air Corps

  1. Pipework in a number of Air Corps buildings was lagged with Asbestos most notably the Apprentice hostel was lagged with badly damaged Asbestos until the early 1990s. So every apprentice who served from approximately the 55th Apprentice Class and before was exposed to asbestos in their sleeping environment.
  2. The apprentice hangar roof was made from asbestos.
  3. Parts of engine shop ceiling was discovered to be made from asbestos when it partially collapsed and dislocated the shoulder of a machinist working beneath it.
  4. The fire crew wore special fire suits made from asbestos. 

It is likely that we have missed many areas of asbestos usage  in both Baldonnel and Gormanston aerodromes so please help us by listing usage locations in comments section below.

European Commission – Young people at work directive (94/33/EC)

Directive 94/33/EC – Protection of Young people at work

Introduced 22nd June 1994

Objective

The aim of this Directive is to lay down minimum requirements for the protection of young people at work.

Definitions

The directive gives legal definitions for the terms “child”, “adolescent”, “young person”, “light work”, “working time” and “rest period”.

Contents

Member States shall take the necessary measures to prohibit work by children. They shall ensure, under the conditions laid down by this Directive, that the minimum working or employment age is not lower than the minimum age at which compulsory full-time schooling – as imposed by national law – ends or 15 years in any event.

This Directive shall apply to any person under 18 years of age having an employment contract or an employment relationship defined by the law in force in a Member State and/or governed by the law in force in a Member State. Exceptions can be adopted by Member States for occasional work or short-term work, involving domestic service in a private household or work regarded as not being harmful, damaging or dangerous to young people in a family undertaking.

The Directive defines “young people” as people under the age of 18 and “children” as young people under the age of 15 or who are still in full-time compulsory education in accordance with national legislation. Adolescents are young people between the ages of 15 and 18 who are no longer in full-time compulsory education in accordance with national legislation.

Member States may make legislative exceptions for the prohibition of work by children not to apply to children employed for the purposes of cultural, artistic, sporting or advertising activities, subject to prior authorisation by the competent authority in each specific case; to children of at least 14 years of age working under a combined work/training scheme or an in-plant work-experience scheme, provided that such work is done in accordance with the conditions laid down by the competent authority; and to children of at least 14 years of age performing light work. Light work can also be performed by children of 13 years of age for a limited number of hours per week in the case of categories of work determined by national legislation.

‘Light work’, as defined in the Directive, shall mean all work which, on account of the inherent nature of the tasks which it involves and the particular conditions under which they are performed is not likely to be harmful to the safety, health or development of children, and is not such as to be harmful to their attendance at school, their participation in vocational guidance or training programmes approved by the competent authority or their capacity to benefit from the instruction received.

Employers shall adopt the measures necessary to protect the safety and health of young people, taking particular account of the specific risks which are a consequence of their lack of experience, of absence of awareness of existing or potential risks or of the fact that young people have not yet fully matured. Employers shall implement such measures on the basis of a comprehensive assessment of the hazards to young people in connection with their work according to Art 6/2 of the Directive. The assessment must be made before young people begin work and when there is any major change in working conditions.

The employer shall inform young people and their representatives of possible risks and of all measures adopted concerning their safety and health.

Member States shall prohibit the employment of young people for:

  • work which is objectively beyond their physical or psychological capacity;
  • work involving harmful exposure to agents which are toxic, carcinogenic, cause heritable genetic damage, or harm to the unborn child or which in any other way chronically affect human health;
  • work involving harmful exposure to radiation;
  • work involving the risk of accidents which it may be assumed cannot be recognised or avoided by young persons owing to their insufficient attention to safety or lack of experience or training;
  • or work in which there is a risk to health from extreme cold or heat, or from noise or vibration.

In addition, the Directive contains provisions relating to working hours, night work, rest periods, annual leave and rest breaks.

Each Member State is responsible for defining the necessary measures applicable in the event of infringement of the provisions of this Directive; these measures must be effective and proportionate to the offence.

*****

It appears the Air Corps failed this directive as soon as young people (apprentices) set foot inside the gates of Casement Aerodrome. At the of time this European Commission directive was issued crumbling asbestos on central heating pipework was present in all 4 landings of the old hostel apprentice accommodation. In fact in previous years apprentices were ordered to carry out asbestos removal without any training, PPE or health surveillance. 

Please also note that on the 11th of September 2017 the HSA wrote to the Irish Army Air Corps requesting….

It should be confirmed that the findings of Asbestos Surveys for relevant buildings at the facility, or the corresponding Registers of Asbestos-Containing Materials {ACMs), have been brought to the attention of  building managers and/or incorporated into the building management system. You are referred to relevant HSA published guidance – Practical Guidelines on ACM Management and Abatement, Section 7.